A Generalized Approach for Model-based Speaker-dependent Single Channel Speech Separation
نویسندگان
چکیده
Abstract– In this paper, we present a new technique for separating two speech signals received from one microphone or one communication channel. In this special case, the separation problem is too ill-conditioned to be handled with common blind source separation techniques. The proposed technique is a generalized approach to model-based speaker-dependent single channel speech separation techniques in which a priori knowledge of the underlying speakers is used to separate speech signals. The proposed technique not only preserves the advantages of model-based speaker dependent single channel speech separation algorithms (i.e. high separability), but also is able to separate the speech signals of an unlimited number of speakers given the speakers' models (i.e. generality). The whole algorithm consists of three stages: classification, identification, and separation. The identities of speakers speech signals form the mixed signal are first determined at the classification and identification stages. Identified speakers' model is then used to separate the underlying signals using a novel approach consisting of Gaussian mixture modeling, maximum likelihood estimation and Wiener filtering. Evaluation results conducted on a database consisting of 100 mixed speech signals with target-to-interference ratios (TIR) ranging from -9 dB to +9 dB show significant performance improvements over those techniques which use a single model for separation.
منابع مشابه
A New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain
Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...
متن کاملSpeaker Independent Single Channel Source Separation using Sinusoidal Features
Model-based approaches to achieve Single Channel Source Separation (SCSS) have been reasonably successful at separating two sources. However, most of the currently used model-based approaches require pre-trained speaker specific models in order to perform the separation. Often, insufficient or no prior training data may be available to develop such speaker specific models, necessitating the use...
متن کاملSource-Filter-Based Single-Channel Speech Separation Using Pitch Information
In this paper, we investigate the source–filter-based approach for single-channel speech separation. We incorporate source-driven aspects by multi-pitch estimation in the model-driven method. For multi-pitch estimation, the factorial HMM is utilized. For modeling the vocal tract filters either vector quantization (VQ) or non-negative matrix factorization are considered. For both methods, the fi...
متن کاملSpeaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation
A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...
متن کاملVocal-tract Modeling for Speaker Independent Single Channel Source Separation
In this paper, we investigate two statistical models for the source-filter based single channel speech separation task. We incorporate source-driven aspects by pitch estimation in the model-driven method which models the vocal-tract part as a priori knowledge. This approach results in a speaker independent (SI) source separation method. For modeling the vocal tract filters Gaussian mixture mode...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007